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A lot has happened in 2.5 years in the realm of modeling, particularly
with the rise of IA that is inundating every aspect of our professional and
personal life. People unfamiliar with this may feel overwhelmed by all the
information related to blue collar jobs extinction and the big replacement
of traditional skills. It is our role, as people close to data, models and their
benefit to keep the expectations realistic.

As of mid-2025, Al is everywhere. New tools are being developed and
released almost daily. Is this a bubble (btw, we can model that too) | think it’s
still too early to say, but we are likely at the peak of inflated expectations,
according to the Gartner Hype Cycle. A period of disillusionment and reduced
expectations will likely follow, but eventually, we will reach a productivity
plateau, where the most relevant Al tools and applications become an
integral part of everyday life for the foreseeable future.

As of mid-2025, Al permeates all aspects of process engineering, yet the
peak of inflated expectations underscores the need to maintain realistic
outlooks. Updated projections indicate the global biogas market, valued at
approximately $65 billion in 2022, is expected to reach $95 billion by 2032,
with a compound annual growth rate CAGR of 4-6.4%, reaching $68-129B
by 2030-2034, with upgrading subsector at 11-15% CAGR driven by Europe
with a 40% market share. Mechanistic modeling, such as CFD and ODE,
provides essential interpretability to optimize these markets, distinguishing
itself from black-box Al approaches and enabling verified ROl in applications
like hydrogen green blending. In the UK/Chile context, opportunities like
Innovate UK grants for biogas and CORFO for green hydrogen highlight
the integration of renewable energy in modeling.

Andrés Donoso Bravo
PhD CEO
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Executive

Summary

The profitability of critical industrial processes, such as
biogas and water treatment, is under threat from volatile
energy costs, the risk of costly operational failures, and
growing regulatory and market pressure for sustainability.
“Black-box” Al solutions lack the trust required for
high-stakes process control, while traditional models fall
short of capturing real-world dynamic complexity.

This Whitepaper demonstrates how hybrid modeling—an
industrially-validated synergy of process physics and Al—
resolves this gap. We create “digital copilots” that not only
optimize operations but do so transparently, enabling ROI
to be quantified prior to CAPEX investment.

The value is demonstrable: double-digit energy OPEX
reductions, risk mitigation by preventing costly oversizing,
and averifiableimprovementin carbonfootprintand resource
circularity. Modela is the strategic partner that deciphers
this complexity, converting operational uncertainty into
verifiable ROl and a resilient competitive advantage.
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THE CURRENT
UBIQUITOUS
ROLE OF
MODELING

Theirruption of artificial intelligence—particularly marked by
the release of ChatGPT at the end of 2022—will be remembered
as one of the major breakthroughs of the past century. This
tool, built on a foundation of advanced models, is capable of
processing, generating, and predicting outcomes based on
user input (commonly referred to as a prompt in this field),
supported by rigorous training and testing procedures that
must be updated periodically.

Suddenly, commonly used and often overlapping terms such
as machine learning (the title of a subsection in our previous
white paper), data-driven, empirical, and phenomenological,
among others, seemed outdated or overshadowed by the
ubiquitous presence of artificial intelligence.

One major drawback of artificial intelligence is that the results
of certain simulations are often difficult—or impossible—to
interpret. A key advance in 2025 lies in the ability of mechanistic
models to quantify ROl interpretably, for instance, mitigating
failure rates in anaerobic digestion exceeding 50-80% in
historical agricultural plants, resulting in 50% revenue losses
for six months or more. ODE and ML hybrids enable predictive
validation, ensuring profitability from startup and distinguishing
from opaque Al simulations.

In contrast, theory-based models can replicate specific processes
with transparency, allowing a complete understanding of the
model’s behavior and, consequently, of the real-world process
being modeled. It is hoped that future developments in Al
will bridge this gap between prediction and interpretability.
Advances in XAl such as SHAP and LIME enable integration
with mechanistic models, but the fundamental basis remains
transparency for regulated processes, distinguishing from purely
black-box approaches. Hybrid models, combining mechanistic
first-principles with ML, address plant-model mismatches,
enabling up to10-30% efficiency gains in nonlinear processes
like biogas production. While these tools help narrow the gap
between prediction and interpretability, ongoing developments
are needed to address their limitations in engineering contexts.
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1.1. MODELING DEFINITION
AND APPROACHES

Modeling involves implementing a mathematical
representation of a certain reality or more
specifically of a process in engineering, whereas
simulating consists of taking these models,
solving them, and postprocessing and visualizing
the results in a particular software and computer
system, in other words, making a use of the
model. Thus, modeling and simulation aim at
describing the essential aspects of behavior
over time and/or space of a process or system
of interest allowing us to understand how it
works. The use of modeling and computational
simulation allows us to strengthen and speed
up the decision-making process related to a
particular process or system performance. This
way, companies can make decisions faster than
through experimental procedures, avoiding extra
costs simultaneously. In addition, it reduces
the risk to operators and the environmental
impact. Nowadays, the exercise of modeling
and simulation is also related to creating a
digital twin or a virtual replica of a specific
process or system.

1.2. MODELS USEFULNESS

Models can be used for a wide range of
reasons but if we want to sum this up is to
give answers to a question that otherwise will
be difficult to answer and that is prediction.
Regardless of whether it is about knowing how
temperature will rise due to climate change,
how the weather will be tomorrow or if by
increasing the rotation speed of my impeller
will improve the efficiency of my process,
knowing how my system will behave in the
future will always be something useful to find
through models.

One may want to predict how a system of
interest will behave due to several factors:

Operation conditions: It refers to the set of
circumstances or factors under which a system,
process, or piece of equipment is intended to
function effectively and safely. This includes

various parameters like temperature, pressure,
flow rate, change of feedstock, variations of the
inlet flows, presence of unexpected compounds
and other relevant variables, that determine
how well a device or system performs its
intended functions. Proper operating conditions
are crucial for ensuring efficiency, safety, and
reliability of any operation.

Environmental conditions: it corresponds to the
environmental factors surrounding a process
or object that can affect its operation or
performance. These conditions include outside
temperature, humidity, air pressure, light, noise,
vibration, marine current behavior, salinity,
etc. In essence, it's the overall environment
that influences how a process runs and how
materials behave within that environment

Retrofitting: System retrofitting is the process
of upgrading or modifying existing systems,
buildings, or equipment with new technologies
or features aiming to improve their performance,
efficiency, or safety. This involves integrating
new components or functionalities into legacy
systems without complete replacement,
though some redesign may be required.
Before executing any retrofitting, it may be
wise to see virtually how these actions will
impact the system performance with minimal
disturbance on the actual physical system,
therefore minimizing the possible impact on
the current process throughput.

Detailed engineering: During the execution of
an feasibility engineering project, particularly
after the early stages of basic or conceptual
engineering—where fundamental principles
are applied to generate a preliminary
estimation of system performance—detailed
process engineering takes a deeper dive
into the intricacies of these processes. It
provides comprehensive specifications and
documentation necessary for precise execution.
Traditional empirical equations or correlations
can now be complemented or even fully
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replaced by the complete resolution of the
governing equations of the system. Today,
critical phenomena such as pressure, turbulence,
heat transfer, erosion, and corrosion can be
accurately modeled through mechanistic
simulations, creating a virtual replica of the
process.

Regardless of the reason for using modelling, you
can basically carry out countless experiments
under different conditions and extract where
those best results you were looking for are
obtained.

Along with prediction, a collateral or
complementary use of modeling could be
for explanatory purposes. Once you have
an accurate predictive model of a system,
you may want to understand the reasons
behind specific behaviors. For example, in
a wastewater treatment plant where only a
handful of parameters are measured periodically
and a biological process is represented with a
mechanistic model, you can infer the current
biological diversity of the bioreactor or detect
the potential accumulation of undesired

intermediates beyond certain thresholds. This
insight allows you to anticipate possible future
behaviors and take corrective action.

Similarly, in a process unit where mixing is
achieved through liquid recirculation, if a
pipe cracks and requires shutdown and repair,
you may need to determine the root cause to
prevent recurrence. By modelling the mixing
process, you can analyse the pressure exerted
on the pipe walls to determine whether the
mixing intensity was the culprit.

How will a system
behave in the future?

Prediction

Evironmental
conditions

Operation
conditions

Detailed

Retrofittings ) y
engineering

Figure 1. General diagram of the main application of modelling for prediction

purposes in processengineering.
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1.3. MECHANISTIC
(Theory-based) VS IA

The broader perception of Al as a black box
still holds — we often don’t know how these
models truly work, and in many cases, not even
their creators fully understand their internal
mechanisms. In contrast, mechanistic models
aim to represent the fundamental principles
behind specific processes. These are sometimes
referred to as “white-box” or “transparent-box”
models'. However, even mechanistic models
are never fully physics-based, because it's
impossible to capture every underlying process
— from macroscopic to microscopic — that
takes place in a real system. There is always
some part of the system that is left out, either
knowingly or unknowingly.

In the following we will describe the main
characteristics that nowadays differentiate
IA and mechanistic modelling.

1.3.1. Theissue of interpretability

Al models are not inherently interpretable,
though current research aims to enhance
their explainability. In this regard, mechanistic
modeling far surpasses Al tools in explanatory
power.

At present, the primary use of Al prioritizes
predictive capability over interpretability.
For instance, when using ChatGPT to draft
an email response or generate a database
from photos of shelved books, the focus is on
output quality—not the underlying process.
Some neural networks and similar models may
be composed of more than a million (hyper)
parameters, making it extremely difficult to
trace what actually produced the results2.

insights into the causal relationships behind
the results.

1.3.2. The issue of data

Real data is always necessary to calibrate and
validate models, regardless of their nature.
However, when it comes to Al models,
which are data-driven by definition, the
amount of data required to produce a useful
and robust model can be substantial. This
requirement presents a challenge in process
engineering, where collecting large and
informative datasets is often expensive and
time-consuming.

In contrast, for some modeling goals, real data
may not be strictly necessary when using
mechanistic models. These models aim to
represent the underlying physics or biology of a
process and can be useful even in the absence
of complete datasets — for example, when
evaluating new technologies or understanding
mass balances within a system.

However, in process engineering, understanding
how and why certain results are achieved is often
critical when leveraging a model. Mechanistic
models allow engineers to trace outcomes back
to specific parameters—such as reaction rates
or stoichiometric conversions—providing clear

* Mathew, D.E., Ebem, D.U.,
lkegwu, A.C. et al. Recent
Emerging Techniques in
Explainable Artificial Intelligence
to Enhance the Interpretable and
Understanding of Al Models for
Human. Neural Process Lett 57, 16
(2025). https://doi.org/10.1007/
s11063-025-11732-2

2 https://www.nytimes.

com/2024/05/21/technology/
ai-language-models-anthropic.
html?searchResultPosition=54



MOD=LACFD WHITEPAPER MODELING AND SIMULATION

The efficiency of Al models is highly dependent on the data. To assess this, several predictive
models based on decision trees were generated and evaluated.
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These models were applied to databases containing different volumes of simulations. By
averaging the prediction accuracy and plotting it as a function of the number of data points.
The Figure shows how the average accuracy of the generated models increases asymptotically
with the number of data points. The improvement in accuracy from 50,000 to 70,000 data
points was only 0.29%.

Identifying the point at which the results become independent of the number of training data
is crucial to increasing confidence in the final outcomes, as it allows this potential source of
variability to be ruled out. Running these 70,000 simulations on a high-performance computer
with 8 cores takes approximately 5 days. Model accuracy reaches asymptotic convergence with
approximately 70,000 data points, but in wastewater treatment (WWTP), aeration accounts
for 45-55% of total OPEX, generating annual costs exceeding $80,000 in large plants. Digital
twins based on ODE and ML can enable up to 10-30% reductions in energy OPEX, with ROI
under six months, highlighting the superiority of interpretable hybrid approaches.
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1.3.3. The issue of time

One variable plays a crucial role in mechanistic
modeling—whether using ODE- or PDE-based
models—when the system is not in steady
state: time. In such models, the current value
of a variable always depends on its previous
state. This temporal dependency requires us
to define initial conditions at the start of the
simulation.

One of the main challenges will be evaluating
the performance of models trained on stationary
data when applied to real-world data, where
a truly steady state is rarely achieved. In Al
models, this time dependency is not always
straightforward, as the training and testing
datasets are often based on near-steady-state
conditions. Many Al models (especially
feedforward neural networks or regressors)
are trained on static input-output pairs. If
trained only on steady-state or snapshot
data, they may perform poorly on transient
conditions unless time-dependent patterns
are incorporated.

If the models show insufficient performance
under these conditions, we will consider
adopting less interpretable but more suitable
approaches for predicting transient processes,
such as long short-term memory (LSTM)
recurrent neural networks.

1.3.4. The environmental
burden

Modeling can significantly enhance the
sustainability of processes by reducing emissions
associated with costly and labor-intensive
physical and field testing. In this regard,
mechanistic models can be solved within a
reasonable time using the power of a standard
personal computer. For example, | ran the ADM1
model—solving 40 ODEs simultaneously—on
a 5-year-old Core i7 with 1 CPU laptop in
under a minute.

continuous processing of massive datasets,
which takes place in large data centers
being built worldwide to meet the growing
demand for Al capabilities. This raises two
major sustainability concerns: the high
energy consumption required to operate
these facilities, and the significant water
use for cooling. Numerous recent studies
have quantified the energy, and water
demands of data centers®. Fortunately,
the expansion of renewable energy,
particularly solar, has accelerated in recent
years, reducing concerns about short-term
energy scarcity. Additionally, advances in
water treatment technologies and thermal
energy recovery from hot water are helping
to mitigate the environmental impact of
data center operations.

1.3.5. Mechanistic with IA.
Exploiting the synergy

Thus far, we have compared mechanistic and
Al models in general terms. However, these
approaches can be combined to leverage the
strengths of both.

One straightforward application—and something
we frequently implement at Modela—is using
a mechanistic model to create a virtual replica
(digital twin) of a process. This allows us to
generate the large datasets required to train
Al models.

In this hybrid approach, the mechanistic
model (typically more time-consuming and
computationally expensive) is used to develop
a data-driven surrogate model. This surrogate
can then be executed and utilized in real-time
applications, offering both accuracy and
efficiency.

In contrast, training and running Al models
(which uses GPU) typically requires the

3 James O'Donnell and Casey
Crownhart. 2025. We did the

math on Al’s energy footprint.
Here's the story you haven't

heard. MIT Technology Review.
https://www.technologyreview.

10 com/2025/05/20/1116327/ai-ener-
gy-usage-climate-footprint-big-tech/
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In our research project, MAAPDA, we recognized the challenges of obtaining sufficient
real-world data to test Al models effectively. To address this, we implemented the ADM1
(Anaerobic Digestion Model No. 1), a theory-based model of the anaerobic digestion process,
in its original form as well as an extended version. The extended model incorporates additional
critical processes, such as H,S generation and digestate quality component prediction.
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We then developed an automated algorithm to run the virtual AD process simulations
repeatedly based on a predefined set of inputs and their permissible variation ranges. For
example, in one of our setups, we successfully executed 2,000 virtual experiments in just
2.5 hours. All generated data underwent data science analysis and was subsequently used

for Al model training and calibration.

11
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1.4 Hybrid Modeling Trends
(2025-26)

The convergence of mechanistic modeling
and artificial intelligence (Al) has advanced
significantly over the past five years, giving
rise to hybrid modeling frameworks that
combine first-principles knowledge with
data-driven learning. These approaches address
two limitations of conventional methods: (i)
the lack of robustness of purely statistical
models when facing extrapolation, and (ii) the
rigidity of deterministic models in capturing
nonlinear and context - dependent dynamics.
By 2025, hybrid modeling is emerging as a
cross-sector standard for high-stakes industrial
processes where reliability, explainability, and
efficiency converge. Its trajectory suggests a
paradigm in which hybrid digital twins not only
augment real-time operations but also become
essential tools for regulatory compliance, risk
management, and sustainable performance.

Teams typically start from first-principles
models (mass/energy balances, ADM1/
ASM, membrane transport) and add machine
learning where parameters are uncertain or
data are rich. This preserves explainability
and keeps decisions within safety limits and
operating objectives. Methodological progress
integrates physics-informed neural networks
(PINNs), Koopman theory paired with Model
Predictive Control (MPC), and causal Al for
root-cause analysis; reinforcement learning
(RL) is considered only with hard constraints
and human oversight. Adoption is projected to
grow at ~10-15% CAGR in chemical engineering
(Internal estimate, Modela 2025 based on
market trends). In wastewater, hybrid prediction
plus MPC is associated with measurable
aeration-energy reductions* (illustrative:
US$80,000-120,000/year in medium-scale
plants assuming electricity at US$0.12/
kWh). In Seawater Reverse Osmosis SWRO,
supervisory MPC reduces specific energy by
~0.3-0.8 kWh/m?® (illustrative: ~US$50,000/
year in large plants assuming 30,000 m%d)].
In aquaculture, hybrid forecasting reduces

12

exposure to algal blooms ($5-7B annually,
illustrative: ~10-20% risk mitigation).

4 M. Salomé Duarte, Gilberto
Martins, Pedro Oliveira, Bruno
Fernandes, Eugénio C. Ferreira,

M. Madalena Alves, Frederico
Lopes, M. Alcina Pereira, and Paulo
Novais. A Review of Computational
Modeling in Wastewater Treatment
Processes. ACS ES&T Water 2024
4 (3),784-804 DOI: 10.1021/
acsestwater.3c00117
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GAS
APPLICATIONS

KEY FOR PROCESS EFFICIENCY AND
DEFOSSILIZATION

Gas compounds play a fundamental role across a wide range
of engineering and sustainable processes. They can serve as
essential feedstocks, intermediate supplies, valuable products,
or, in some cases, undesired by-products or emissions. Their
presence and behavior are often critical to the efficiency, safety,
and environmental impact of a process. For instance, gases may
be injected intentionally to initiate or sustain a reaction, generated
as part of a transformation, or released into the atmosphere as
part of the system’s output.

Modeling and simulation provide powerful tools for understanding
and predicting the behavior of gases within these processes.
Whether analyzing gas blending in energy systems, CO,
emissions in bioprocesses, or hydrogen dynamics in sustainable
fuel technologies, computational models can offer insight into
mass transfer, reaction kinetics, and environmental dispersion.
These tools enable engineers and decision-makers to optimize
performance, ensure compliance with regulatory standards, and
support the transition to greener technologies

In renewable gas applications, CFD optimizes mixing and hydrogen
blending, reducing biogas upgrading costs. With Europe capturing
40% of the global biogas market, these mechanistic simulations
can extend equipment lifespan by mitigating H2S corrosion

ensuring regulatory compliance in UK and Chile grids.
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2.1. MAKING THE GRID
GREENER AND SAFER

One of the key challenges in the energy
sector is transforming the existing gas grid
into a greener, more sustainable system by
increasing the share of renewable gases in the
overall mix. These renewable gases include
biogas, biomethane, green hydrogen, and
others that offer low-carbon or carbon-neutral
alternatives to conventional fossil fuels.
Alongside this transition, ensuring the safe
handling, distribution, and integration of these
gases is essential to protect infrastructure, the
environment, and public health.

2.1.1. Renewables gas mix

The natural gas distribution network is
a well-developed infrastructure globally,
consisting of pipelines that transport gas from
extraction to consumption points. However,
it contributes significantly to greenhouse gas
emissions through combustion and leaks. As
part of the energy transition, there is a growing
need to replace traditional hydrocarbons with
cleaner alternatives, such as hydrogen. Yet,
this shift presents several challenges®. The
use of CFD simulation can help study in detail
the mixing of these gases within the natural
gas distribution network. The information
provided by these simulations can be used
to make decisions regarding the suitability
of gas replacement, as well as to study the
effect of different operational parameters
on the performance of the transportation
network. Several geometries of gas blending
units can be represented in CFD as it is shown
in Figure 2. And the results obtained through
the modeling application are well validated
with other studies.

14

° Topolski, Reznicek, E. P., Erdener,
B. C., San Marchi, C. W., Ronevich,
J. A, Fring, L., ... & Chung, M.
(2022). Hydrogen blending into
natural gas pipeline infrastructure:
review of the State of technology.
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Figure 2. Virtual replica and simulation of two gas blending configurations systems.
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Figure 3. Gas blending simulation results with reported values from literature.

As shown in Figure 3, the transported energy is initially zero since the system starts at
rest. Over time, the pressure drop accelerates the flow until it reaches a steady state. By
simulating the same scenario with different gas compositions, the results of Gondal et al®.
can be replicated, as shown in Figure 3.

¢ Gondal, I. A, & Sahir, M. H.

(2012). Prospects of natural gas

pipeline infrastructure in hydrogen

transportation. International

Journal of Energy Research, 36(15),
15 1338-1345.
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2.1.2. Hazardous gas
release

H.,S (hydrogen sulfide) is a highly toxic and
corrosive compound that can cause death
within seconds, even at very low concentrations.
Unfortunately, it is commonly produced under
anaerobic biological conditions in waste
treatment processes, as well as during crude oil
refining. Since we cannot completely eliminate
its presence, it is essential to design systems and
define operating conditions that minimize the
impact of H,S on the environment surrounding
the emission point. One effective approach is
to simulate the dispersion plume of an H,S-rich
gas stream to evaluate exposure zones and

I

(=]

8

(4]

21
(mass fraction)

F1

ensure regulatory compliance. The shape and
reach of the plume depend on several factors.
As illustrated in the Figure 4, both the outlet
mass flow rate and outlet velocity significantly
influence the plume’s behavior. This model
was implemented in OpenFOAM, considering
a turbulent flow regime, thermodynamic and
transport models, and using Cantera’ to obtain
accurate parameter values.

F2 F3

Figure4. Simulation of the H,S-rich gas stream under various operating conditions.

7 https://cantera.org/2.6/sphinx/html/
cython/thermo.html

16



MOD=LACHD

WHITEPAPER MODELING AND SIMULATION

2.2. OXIGEN SUPPLY AND
MIXING

Air or oxygen injection plays a critical role in
various industrial processes, primarily in two
key aspects: maintaining aerobic conditions
necessary for biological or chemical reactions
and promoting effective mixing within the
system. Depending on the application, this
injection can take several forms, including jet
injection, gas bubbling, and surface aeration,
among others. Each method has different
implications for mass transfer, energy efficiency,
and process control.

2.2.1. Gas bubbling

Aeration typically occurs through the
injection of bubbles, usually from the bottom
of a process unit. These bubbles can vary in
shape and size depending on operational
conditions and the diffuser’s design. Their
physical characteristics directly influence
oxygen transfer efficiency, mixing dynamics,
and the overall effectiveness of the aeration
process.

me: 6.647723

.

Traditional modeling approaches often
cannot represent individual bubbles explicitly
and instead treat the gas as a continuous
secondary phase—an approximation that
may introduce limitations. Simulating bubble
injection systems using fully resolved Euler-
Euler models is highly computationally
demanding. In contrast, hybrid Euler-
Lagrange approaches offer a substantial
reduction in computational cost while
maintaining accuracy. Figure 5 illustrates the
development and impact of a bubble-type air
injection system within a process unit. These
models have been validated in the literature
against both high-fidelity simulations and
experimental data. Building capabilities
around these methods allows for faster, more
scalable simulations of real-world systems,
enabling better design and operational
optimization.
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Figure 5. Simulation of the injection of air using a bubbling system.
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2.2.2. Oxygen concentration

The transfer of oxygen from the gas phase
to the liquid phase is key to ensuring that the
oxygen concentration is appropriate for the
process to take place. An oxygen concentration
below the desired threshold may limit the (bio)
reaction, reducing product growth (e.g., from
fish, bacteria, yeast, etc.) or product generation.
Conversely, a concentration above the set point
can lead to excessive energy consumption for
air injection and, consequently, unnecessary
economic costs.

Various technologies have been developed to
ensure that the required oxygen concentration
is achieved in the process unit. In Figure 6, we

show a CFD modeling application capable of
representing oxygen transfer between phases
and predicting whether the levels required by
the process are met. Such simulations can be
leveraged across the air injection technology
development industry to optimize performance
and efficiency.
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Figure 6. Validation of CFD model for (a) optimal oxygen homogenization in tank for a recirculating unit in

Aquaculture and (b) comparison of predicted OD values versus experimental ones.
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ADVANCED
BIOLOGICAL
PROCESS

ENHANCING RESILIENCE THOUGH
DIGITAL COPILOTING

Biological processes—or bioprocesses—are expected to play
a pivotal role in the transition toward a circular economy and
in advancing the environmental sustainability of industrial
systems. These processes harness the power of microorganisms
or enzymes to convert waste into valuable resources, reduce
emissions, and promote the efficient use of materials and
energy.

Modeling these bioprocesses provides a powerful way to
understand, predict, and optimize their behavior. When
integrated into operations, a well-developed model can
function as a real-time digital copilot—running in parallel with
the physical system to offer continuous insights, simulate
alternative scenarios, and support informed decision-making.
This added layer of information helps reduce uncertainty,
improve process reliability, and ultimately enhance the overall
performance and resilience of sustainable technologies.
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3.1 MOVING LIMITS/
BREAKING BOUNDARIES

Exploring modeling tools allows us to move
beyond the traditional constraints and
boundaries imposed by the physical domain.
We should continuously seek new approaches
and think beyond conventional methods. This
mindset of forward-looking and out-of-the-box
thinking enables us to test innovative ideas,
challenge the status quo, and develop new
tools that can scale up the benefits of using
modeling.

3.1.1 A methodology for fluid
dynamic and kinetic
integration

So far, there is no fully automated methodology
available to integrate fluid dynamic models—
typically solved through CFD—with the kinetics
of a process in a seamless and efficient way.
While several methodologies attempting to
bridge this gap have been reported in the
literature—including in a review we published
couple years ago® —these approaches still rely
heavily on manual procedures and subjective
decisions. As a result, the overall workflow
becomes time-consuming and highly dependent
on the individual modeler’s expertise and
judgment.

This lack of standardization not only limits
scalability and reproducibility but also introduces
significant variability in results, making it difficult
to consistently evaluate or compare outcomes
across different systems or modeling teams.
Developing a robust, automated framework
that can couple CFD with kinetic models in a
transparent and repeatable manner remains a
critical challenge—and a major opportunity—
for the modeling and simulation community.
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The developed compartmentalization procedure is fully automated with a self-developed
tool utilizing OpenFOAM and C++. OpenFOAM which facilitates direct access to the
mesh’s data and the corresponding fields from the CFD simulation.

The tool first takes a user-defined scalar field from a CFD simulation and a specified number of
zones. It calculates threshold values to divide the domain into equal-volume zones, assigning
each mesh cell accordingly (Figure a-c). Connected cells are grouped into compartments, and
those below a minimum volume are merged with neighbors based on the highest exchange
flow (Figure d). The tool then identifies boundary faces between compartments (Figure
e) and sums the flow through them to compute an N x N exchange flow matrix (Figure f).
Compartments can also be refined manually using primitive shapes.

The described approach simplifies the system’s
stationary flow field and the geometric details
of the CFD simulation into a reduced set of
compartments and their exchange flows. The
more compartments there are, the more details
from the original flow field prevail. Therefore,
increasing the number of compartments reduces
information loss. Actually, a CFD model is a
compartmentalized system itself, where each
mesh cell is a perfectly mixed compartment.
Using the developed tool, compartmentalization
can be performed based on any field defined
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in the CFD simulation. To ensure reliability,
the total liquid volume is verified to match the
sum of all compartment volumes. Additionally,
an algorithm checks the mass balance for
every compartment and iteratively corrects
its exchange flows until the balance is fulfilled
under a defined tolerance.
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Figure 7. Compartmentalization of C1. (a) Streamlines of the velocity field, (b) compartments visualization, and (c) vector
of volumes and exchange flow matrix.
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Figure 8. Compartmental methane performance and average speed for (a) C1 and (b) C2.
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3.1.2 An improved approach
to evaluate dead zones in
bioprocesses

Dead zones are commonly used as indicators
of mixing efficiency within a biorreactor.
An effective mixing system ensures a
well-homogenized volume, resulting in biogas
production comparable to that of a Perfectly
Mixed Reactor (PMR). In this context, a dead
zone refers to a region where biorreactor
performance is reduced, often due to nutrient
deficiencies that impair microbial activity and
survival. Traditional definitions of dead zones
rely on absolute or relative velocity thresholds.
We used the above desribed procudre to study
detah zone definition in anaerobic digestion.

When simulating the AD process alongside
the flow field (Figure 7), it becomes evident
that methane production depends on multiple
factors beyond flow velocity alone. In C2,
the compartments with the highest methane
performances do not always correspond to
those with the highest average speeds; a
pattern also observed in C1. This indicates
that velocity thresholds alone are insufficient
for evaluating dead zones (Figure 8). Other
factors, such as connectivity to the inflow
location and substrate characteristics, may
significantly impact AD performance locally.
Moreover, classifying reactor volumes solely
as dead or active may overlook nuances
in performance. The full integration of the
compartmentalization approach with the
ADM1 model enables the calculation of this
performance metric. These findings have direct
and severe financial implications for project
design and profitability. For instance, case C1
exhibits a methane yield of 98.1% relative to a
PMR, even though conventional criteria would
classify up to 99.7% of its volume as a dead
zone. An engineer or investor relying on that
flawed metric would be induced to specify a
more powerful and expensive mixing system
(increasing CAPEX) with higher lifetime energy
consumption (increasing OPEX). This decision
would permanently damage the project’s ROI
without delivering any proportional benefit in
methane yield.
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3.2 BIOFERTILIZER
PRODUCTION

Transitioning to a circular economy also involves
moving away from fossil fuel-based chemical
fertilizers toward renewable, sustainable sources
of nutrients that support long-term soil health.
One promising pathway is the use of anaerobic
digestion—a biological process in which organic
matter is broken down by microorganisms in
the absence of oxygen, producing biogas as
a renewable energy source. In addition to
energy production, this process generates a
nutrient-rich byproduct known as digestate,
which can serve as a valuable biofertilizer.

Digestate contains essential nutrients and
minerals such as nitrogen, phosphorus,
potassium, and trace elements that are beneficial
for agricultural applications. However, the
effective handling, treatment, and valorization
of digestate are critical to ensuring both
the economic viability and environmental
sustainability of anaerobic digestion systems. If
not properly managed, digestate can become a
waste stream rather than a valuable resource.

To fully unlock its potential, digestate must
be treated not merely as a residual output,
but as a co-product with quantifiable value.
Therefore, accurate modelling of the anaerobic
digestion process should include a detailed
representation of the composition and dynamics
of digestate. This includes tracking the presence
and transformation of key components
that directly influence its agronomic value,
marketability, and environmental impact. Such
a comprehensive modelling approach can
support better decision-making, optimize system
performance, and promote the integration
of anaerobic digestion into broader circular
economy strategies.
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3.2.1 Phosphorus presence
in digestate

The original ADM1 model does not include
certain elements in its equations, such as
sulfur, phosphorus, or iron, due to the limited
research available on these topics at the time
the model was developed. As a result, the
model is unable to describe mechanisms that
occur in processes involving, for example,
phosphorus-rich wastewater. For this reason,
several extensions to the original model have
been developed to capture these dynamics.
One such extension focuses on phosphorus
and considers the release of phosphate
from the substrate into the liquid phase of
digestion, followed by its precipitation in
the form of struvite or k-struvite’. Capturing
these mechanisms is particularly relevant for
phosphate-rich influents, and it also enables

modelling of phosphate concentration in the
digestate and its potential use as a higher-quality
fertilizer. We developed an extended version
of the ADM1 called ADM1-FB that considers
the phosphorus cycle as well as the H2S
presence in the biogas. A general diagram of
this extended version of the model as well the
result of simulation using the model, depicting
the dynamic of the nutrients in the digestate
and the struvite buildup, are shown in Figure 9.
The environmental impact transforms digestate
from waste to a valuable co-product, with
markets in sustainable agriculture showing
growing value in 2025.
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Figure 9. General diagram of the new processes included (yellow squares) in the extended version of the ADM1 model

called ADM1-FB.
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3.2.2 Nutrient removal

The sister company Aroma has conceptually
developed the Nitrogen Removal Process
(PEN). This innovative solution aims to reduce
the nitrogen content in the digestate through
a biological process. PEN uses the action of
three bacterial strains, which, through their
metabolism, transform nitrogen compounds
into gaseous nitrogen. This enables a natural
reduction of nitrogen content, allowing for
more balanced and environmentally friendly
management in agricultural settings. Figure
10 shows a general diagram of this solution
and its main components. The performance
of PEN depends critically on several operating
parameters. Therefore, with modeling, an
advanced exploitation code has been developed
to analyze the effect of each of these parameters
on system performance. This code allows the
generation of a large number of operational
scenarios. Subsequently, using data analysis
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algorithms, these scenarios are examined to
identify correlations and extract conclusions.
All the information can be used to support the
piloting of the PEN system. Figure 10 present
the comprehensive modelling application to
understand and optimize the operation of
this bioreactor.

The advanced exploitation code analyzes
operational parameters across multiple
scenarios, identifying correlations to optimize
PEN system piloting. This could result in up to
10-20% OPEX savings in biological nitrogen
reduction, promoting balanced management
in agricultural and environmental settings.
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Figure 10. Process modelling of the nutrient removal process (PEN). (a) diagram of the bioreactor (b) bioprocess

pathways involved in the system (c) data science application of the model results (d) main variables dynamic of the

system in transient model.
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The Virtuous Circle of
Industrial Modeling
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TAKE-
HOME
MESSAGE

The use of models continues to shape our lives—whether in
the recommendations we receive for movies and series or
in improving and optimizing the operation of processes to
maximize resilience and sustainability indicators. Al will play
a key role; however, theory-based models, which capture the
fundamentals and the essential processes that govern life on
the planet, will remain the backbone of engineering, where
understanding what is happening—and the causes of a given
behavior—is of paramount importance.

A virtuous cycle may be emerging: Al is hungry for data
and new content, and theory-based models can help satisfy
that demand by generating large amounts of data at a much
lower cost than running equivalent field experiments. For
this cycle to work, mechanistic models must be properly
implemented—both in terms of their underlying fundamentals
and their numerical resolution—so that the generated data is
trustworthy and Al applications can build upon it effectively.

Mechanistic models generate reliable data for Al, quantifying
ROl in key industries, such as preventing aquaculture mortalities
causing global losses of billions annually due to algal blooms
and diseases. This integration accelerates the industrial
revolution toward resilient and sustainable processes in 2025.
By 2025, hybrid modeling will drive efficiency improvement
in complex systems, positioning mechanistic foundations as
the backbone for Al-driven industrial revolution.

| strongly believe we are at the beginning of an industrial
revolution. As with all revolutions, it will bring significant
changes to the way work is carried out. We must adapt,
embrace, and take full advantage of the benefits that these
new tools and capabilities will bring.
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