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Editorial

A lot has happened in 2.5 years in the realm of modeling, particularly 
with the rise of IA that is inundating every aspect of our professional and 
personal life. People unfamiliar with this may feel overwhelmed by all the 
information related to blue collar jobs extinction and the big replacement 
of traditional skills. It is our role, as people close to data, models and their 
benefit to keep the expectations realistic.

As of mid-2025, AI is everywhere. New tools are being developed and 
released almost daily. Is this a bubble (btw, we can model that too) I think it’s 
still too early to say, but we are likely at the peak of inflated expectations, 
according to the Gartner Hype Cycle. A period of disillusionment and reduced 
expectations will likely follow, but eventually, we will reach a productivity 
plateau, where the most relevant AI tools and applications become an 
integral part of everyday life for the foreseeable future.

As of mid-2025, AI permeates all aspects of process engineering, yet the 
peak of inflated expectations underscores the need to maintain realistic 
outlooks. Updated projections indicate the global biogas market, valued at 
approximately $65 billion in 2022, is expected to reach $95 billion by 2032, 
with a compound annual growth rate CAGR of 4-6.4%, reaching $68-129B 
by 2030-2034, with upgrading subsector at 11-15% CAGR driven by Europe 
with a 40% market share. Mechanistic modeling, such as CFD and ODE, 
provides essential interpretability to optimize these markets, distinguishing 
itself from black-box AI approaches and enabling verified ROI in applications 
like hydrogen green blending. In the UK/Chile context, opportunities like 
Innovate UK grants for biogas and CORFO for green hydrogen highlight 
the integration of renewable energy in modeling.

“

Andrés Donoso Bravo
PhD CEO



Table 
of  Content

1. THE CURRENT UBIQUITOUS ROLE OF    		
     MODELING	 ....................................................5

1.1. Modeling definition and approaches...................	..6

1.2. Models usefulness	 .................................................6

1.3. Mechanistic (Theory-based) VS IA........................8

1.3.1. The issue of interpretabilit	..................................8

1.3.2. The issue of data	 .................................................8

1.3.3. The issue of time	................................................10

1.3.4. The environmental burden................................10

1.3.5. Mechanistic with IA, 
              Exploiting the synergy.............................................10

1.4 Hybrid Modeling Trends (2025–26)	 ..................12

2. GAS APPLICATIONS – key for process 
    efficiency and defossilization	...............................13

2.1. Making the grid greener and safer	.....................14

2.1.1. Renewables gas mix	.........................................14

2.1.2. Hazardous gas release....................................	.	...16

2.2. Oxigen supply and mixing	..................................17

2.2.1. Gas bubbling	 ....................................................17

2.2.2. Oxygen concentration	....................................18

3. ADVANCED BIOLOGICAL PROCESS –    		
    Enhancing resilience though digital 
    copiloting	.................................................................19

3.1. Moving limits/breaking boundaries	....................20

3.1.1. A methodology for fluid dynamic and 
    kinetic integration	..............................................20

3.1.2. A redefinition of death zone
             in bioprocess	.....................................................23

3.2. Biofertilizer production	......................................23

3.2.1. Phosphorus presence in digestate	 ................24

3.2.2. Nutrient removal	 ............................................25

4. TAKE-HOME MESSAGE	................................27



Executive 
Summary

The profitability of critical industrial processes, such as 
biogas and water treatment, is under threat from volatile 
energy costs, the risk of costly operational failures, and 
growing regulatory and market pressure for sustainability. 
“Black-box” AI solutions lack the trust required for 
high-stakes process control, while traditional models fall 
short of capturing real-world dynamic complexity.

This Whitepaper demonstrates how hybrid modeling—an 
industrially-validated synergy of process physics and AI—
resolves this gap. We create “digital copilots” that not only 
optimize operations but do so transparently, enabling ROI 
to be quantified prior to CAPEX investment.

The value is demonstrable: double-digit energy OPEX 
reductions, risk mitigation by preventing costly oversizing, 
and a verifiable improvement in carbon footprint and resource 
circularity. Modela is the strategic partner that deciphers 
this complexity, converting operational uncertainty into 
verifiable ROI and a resilient competitive advantage.



5

WHITEPAPER MODELING AND SIMULATION

THE CURRENT 
UBIQUITOUS
ROLE OF 
MODELING

1

The irruption of artificial intelligence—particularly marked by 
the release of ChatGPT at the end of 2022—will be remembered 
as one of the major breakthroughs of the past century. This 
tool, built on a foundation of advanced models, is capable of 
processing, generating, and predicting outcomes based on 
user input (commonly referred to as a prompt in this field), 
supported by rigorous training and testing procedures that 
must be updated periodically.

Suddenly, commonly used and often overlapping terms such 
as machine learning (the title of a subsection in our previous 
white paper), data-driven, empirical, and phenomenological, 
among others, seemed outdated or overshadowed by the 
ubiquitous presence of artificial intelligence.

One major drawback of artificial intelligence is that the results 
of certain simulations are often difficult—or impossible—to 
interpret. A key advance in 2025 lies in the ability of mechanistic 
models to quantify ROI interpretably, for instance, mitigating 
failure rates in anaerobic digestion exceeding 50-80% in 
historical agricultural plants, resulting in 50% revenue losses 
for six months or more. ODE and ML hybrids enable predictive 
validation, ensuring profitability from startup and distinguishing 
from opaque AI simulations.

In contrast, theory-based models can replicate specific processes 
with transparency, allowing a complete understanding of the 
model’s behavior and, consequently, of the real-world process 
being modeled. It is hoped that future developments in AI 
will bridge this gap between prediction and interpretability. 
Advances in XAI such as SHAP and LIME enable integration 
with mechanistic models, but the fundamental basis remains 
transparency for regulated processes, distinguishing from purely 
black-box approaches. Hybrid models, combining mechanistic 
first-principles with ML, address plant-model mismatches, 
enabling up to10-30% efficiency gains in nonlinear processes 
like biogas production. While these tools help narrow the gap 
between prediction and interpretability, ongoing developments 
are needed to address their limitations in engineering contexts.
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1.1.    MODELING DEFINITION 	
	 AND APPROACHES

Modeling involves implementing a mathematical 
representation of a certain reality or more 
specifically of a process in engineering, whereas 
simulating consists of taking these models, 
solving them, and postprocessing and visualizing 
the results in a particular software and computer 
system, in other words, making a use of the 
model. Thus, modeling and simulation aim at 
describing the essential aspects of behavior 
over time and/or space of a process or system 
of interest allowing us to understand how it 
works. The use of modeling and computational 
simulation allows us to strengthen and speed 
up the decision-making process related to a 
particular process or system performance. This 
way, companies can make decisions faster than 
through experimental procedures, avoiding extra 
costs simultaneously. In addition, it reduces 
the risk to operators and the environmental 
impact. Nowadays, the exercise of modeling 
and simulation is also related to creating a 
digital twin or a virtual replica of a specific 
process or system.

1.2.   MODELS USEFULNESS

Models can be used for a wide range of 
reasons but if we want to sum this up is to 
give answers to a question that otherwise will 
be difficult to answer and that is prediction. 
Regardless of whether it is about knowing how 
temperature will rise due to climate change, 
how the weather will be tomorrow or if by 
increasing the rotation speed of my impeller 
will improve the efficiency of my process, 
knowing how my system will behave in the 
future will always be something useful to find 
through models. 

One may want to predict how a system of 
interest will behave due to several factors:

Operation conditions: It refers to the set of 
circumstances or factors under which a system, 
process, or piece of equipment is intended to 
function effectively and safely. This includes 

various parameters like temperature, pressure, 
flow rate, change of feedstock, variations of the 
inlet flows, presence of unexpected compounds 
and other relevant variables, that determine 
how well a device or system performs its 
intended functions. Proper operating conditions 
are crucial for ensuring efficiency, safety, and 
reliability of any operation. 

Environmental conditions: it corresponds to the 
environmental factors surrounding a process 
or object that can affect its operation or 
performance. These conditions include outside 
temperature, humidity, air pressure, light, noise, 
vibration, marine current behavior, salinity, 
etc. In essence, it’s the overall environment 
that influences how a process runs and how 
materials behave within that environment 

Retrofitting: System retrofitting is the process 
of upgrading or modifying existing systems, 
buildings, or equipment with new technologies 
or features aiming to improve their performance, 
efficiency, or safety. This involves integrating 
new components or functionalities into legacy 
systems without complete replacement, 
though some redesign may be required. 
Before executing any retrofitting, it may be 
wise to see virtually how these actions will 
impact the system performance with minimal 
disturbance on the actual physical system, 
therefore minimizing the possible impact on 
the current process throughput.

Detailed engineering: During the execution of 
an feasibility engineering project, particularly 
after the early stages of basic or conceptual 
engineering—where fundamental principles 
are applied to generate a preliminary 
estimation of system performance—detailed 
process engineering takes a deeper dive 
into the intricacies of these processes. It 
provides comprehensive specifications and 
documentation necessary for precise execution. 
Traditional empirical equations or correlations 
can now be complemented or even fully 
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replaced by the complete resolution of the 
governing equations of the system. Today, 
critical phenomena such as pressure, turbulence, 
heat transfer, erosion, and corrosion can be 
accurately modeled through mechanistic 
simulations, creating a virtual replica of the 
process.

Regardless of the reason for using modelling, you 
can basically carry out countless experiments 
under different conditions and extract where 
those best results you were looking for are 
obtained. 

Along with prediction, a collateral or 
complementary use of modeling could be 
for explanatory purposes. Once you have 
an accurate predictive model of a system, 
you may want to understand the reasons 
behind specific behaviors. For example, in 
a wastewater treatment plant where only a 
handful of parameters are measured periodically 
and a biological process is represented with a 
mechanistic model, you can infer the current 
biological diversity of the bioreactor or detect 
the potential accumulation of undesired 

intermediates beyond certain thresholds. This 
insight allows you to anticipate possible future 
behaviors and take corrective action.

Similarly, in a process unit where mixing is 
achieved through liquid recirculation, if a 
pipe cracks and requires shutdown and repair, 
you may need to determine the root cause to 
prevent recurrence. By modelling the mixing 
process, you can analyse the pressure exerted 
on the pipe walls to determine whether the 
mixing intensity was the culprit.

Figure 1.  General diagram of the main application of modelling for prediction 
purposes in processengineering.
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1.3.	 MECHANISTIC 			 
	 (Theory-based) VS IA

The broader perception of AI as a black box 
still holds — we often don’t know how these 
models truly work, and in many cases, not even 
their creators fully understand their internal 
mechanisms. In contrast, mechanistic models 
aim to represent the fundamental principles 
behind specific processes. These are sometimes 
referred to as “white-box” or “transparent-box” 
models1. However, even mechanistic models 
are never fully physics-based, because it’s 
impossible to capture every underlying process 
— from macroscopic to microscopic — that 
takes place in a real system. There is always 
some part of the system that is left out, either 
knowingly or unknowingly.

In the following we will describe the main 
characteristics that nowadays differentiate 
IA and mechanistic modelling.

1.3.1.   The issue of interpretability
AI models are not inherently interpretable, 
though current research aims to enhance 
their explainability. In this regard, mechanistic 
modeling far surpasses AI tools in explanatory 
power. 

At present, the primary use of AI prioritizes 
predictive capability over interpretability. 
For instance, when using ChatGPT to draft 
an email response or generate a database 
from photos of shelved books, the focus is on 
output quality—not the underlying process. 
Some neural networks and similar models may 
be composed of more than a million (hyper)
parameters, making it extremely difficult to 
trace what actually produced the results2.

However, in process engineering, understanding 
how and why certain results are achieved is often 
critical when leveraging a model. Mechanistic 
models allow engineers to trace outcomes back 
to specific parameters—such as reaction rates 
or stoichiometric conversions—providing clear 

insights into the causal relationships behind 
the results.

1.3.2.   The issue of data

Real data is always necessary to calibrate and 
validate models, regardless of their nature. 
However, when it comes to AI models, 
which are data-driven by definition, the 
amount of data required to produce a useful 
and robust model can be substantial. This 
requirement presents a challenge in process 
engineering, where collecting large and 
informative datasets is often expensive and 
time-consuming.

In contrast, for some modeling goals, real data 
may not be strictly necessary when using 
mechanistic models. These models aim to 
represent the underlying physics or biology of a 
process and can be useful even in the absence 
of complete datasets — for example, when 
evaluating new technologies or understanding 
mass balances within a system.

1 Mathew, D.E., Ebem, D.U., 
Ikegwu, A.C. et al. Recent 
Emerging Techniques in 
Explainable Artificial Intelligence 
to Enhance the Interpretable and 
Understanding of AI Models for 
Human. Neural Process Lett 57, 16 
(2025). https://doi.org/10.1007/
s11063-025-11732-2

2 https://www.nytimes.
com/2024/05/21/technology/
ai-language-models-anthropic.
html?searchResultPosition=54



9

WHITEPAPER MODELING AND SIMULATION

The efficiency of AI models is highly dependent on the data. To assess this, several predictive 
models based on decision trees were generated and evaluated.

These models were applied to databases containing different volumes of simulations. By 
averaging the prediction accuracy and plotting it as a function of the number of data points. 
The Figure shows how the average accuracy of the generated models increases asymptotically 
with the number of data points. The improvement in accuracy from 50,000 to 70,000 data 
points was only 0.29%.

Identifying the point at which the results become independent of the number of training data 
is crucial to increasing confidence in the final outcomes, as it allows this potential source of 
variability to be ruled out. Running these 70,000 simulations on a high-performance computer 
with 8 cores takes approximately 5 days. Model accuracy reaches asymptotic convergence with 
approximately 70,000 data points, but in wastewater treatment (WWTP), aeration accounts 
for 45-55% of total OPEX, generating annual costs exceeding $80,000 in large plants. Digital 
twins based on ODE and ML can enable up to 10-30% reductions in energy OPEX, with ROI 
under six months, highlighting the superiority of interpretable hybrid approaches.
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1.3.3. The issue of time
One variable plays a crucial role in mechanistic 
modeling—whether using ODE- or PDE-based 
models—when the system is not in steady 
state: time. In such models, the current value 
of a variable always depends on its previous 
state. This temporal dependency requires us 
to define initial conditions at the start of the 
simulation.

One of the main challenges will be evaluating 
the performance of models trained on stationary 
data when applied to real-world data, where 
a truly steady state is rarely achieved. In AI 
models, this time dependency is not always 
straightforward, as the training and testing 
datasets are often based on near-steady-state 
conditions. Many AI models (especially 
feedforward neural networks or regressors) 
are trained on static input–output pairs. If 
trained only on steady-state or snapshot 
data, they may perform poorly on transient 
conditions unless time-dependent patterns 
are incorporated.

If the models show insufficient performance 
under these conditions, we will consider 
adopting less interpretable but more suitable 
approaches for predicting transient processes, 
such as long short-term memory (LSTM) 
recurrent neural networks.

1.3.4.   The environmental 		
 	    burden
Modeling can significantly enhance the 
sustainability of processes by reducing emissions 
associated with costly and labor-intensive 
physical and field testing. In this regard, 
mechanistic models can be solved within a 
reasonable time using the power of a standard 
personal computer. For example, I ran the ADM1 
model—solving 40 ODEs simultaneously—on 
a 5-year-old Core i7 with 1 CPU laptop in 
under a minute.

In contrast, training and running AI models 
(which uses GPU) typically requires the 

continuous processing of massive datasets, 
which takes place in large data centers 
being built worldwide to meet the growing 
demand for AI capabilities. This raises two 
major sustainability concerns: the high 
energy consumption required to operate 
these facilities, and the significant water 
use for cooling. Numerous recent studies 
have quantified the energy, and water 
demands of data centers3. Fortunately, 
the expansion of renewable energy, 
particularly solar, has accelerated in recent 
years, reducing concerns about short-term 
energy scarcity. Additionally, advances in 
water treatment technologies and thermal 
energy recovery from hot water are helping 
to mitigate the environmental impact of 
data center operations. 

1.3.5.   Mechanistic with IA. 		
	    Exploiting the synergy
Thus far, we have compared mechanistic and 
AI models in general terms. However, these 
approaches can be combined to leverage the 
strengths of both.

One straightforward application—and something 
we frequently implement at Modela—is using 
a mechanistic model to create a virtual replica 
(digital twin) of a process. This allows us to 
generate the large datasets required to train 
AI models.

In this hybrid approach, the mechanistic 
model (typically more time-consuming and 
computationally expensive) is used to develop 
a data-driven surrogate model. This surrogate 
can then be executed and utilized in real-time 
applications, offering both accuracy and 
efficiency.

3 James O’Donnell and Casey 

Crownhart. 2025. We did the 

math on AI’s energy footprint. 

Here’s the story you haven’t 

heard. MIT Technology Review. 

https://www.technologyreview.

com/2025/05/20/1116327/ai-ener-

gy-usage-climate-footprint-big-tech/
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In our research project, MAAPDA, we recognized the challenges of obtaining sufficient 
real-world data to test AI models effectively. To address this, we implemented the ADM1 
(Anaerobic Digestion Model No. 1), a theory-based model of the anaerobic digestion process, 
in its original form as well as an extended version. The extended model incorporates additional 
critical processes, such as H₂S generation and digestate quality component prediction.

We then developed an automated algorithm to run the virtual AD process simulations 
repeatedly based on a predefined set of inputs and their permissible variation ranges. For 
example, in one of our setups, we successfully executed 2,000 virtual experiments in just 
2.5 hours. All generated data underwent data science analysis and was subsequently used 
for AI model training and calibration.
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1.4    Hybrid Modeling Trends 	
	 (2025–26)

The convergence of mechanistic modeling 
and artificial intelligence (AI) has advanced 
significantly over the past five years, giving 
rise to hybrid modeling frameworks that 
combine first-principles knowledge with 
data-driven learning. These approaches address 
two limitations of conventional methods: (i) 
the lack of robustness of purely statistical 
models when facing extrapolation, and (ii) the 
rigidity of deterministic models in capturing 
nonlinear and context - dependent dynamics. 
By 2025, hybrid modeling is emerging as a 
cross-sector standard for high-stakes industrial 
processes where reliability, explainability, and 
efficiency converge. Its trajectory suggests a 
paradigm in which hybrid digital twins not only 
augment real-time operations but also become 
essential tools for regulatory compliance, risk 
management, and sustainable performance.

Teams typically start from first-principles 
models (mass/energy balances, ADM1/
ASM, membrane transport) and add machine 
learning where parameters are uncertain or 
data are rich. This preserves explainability 
and keeps decisions within safety limits and 
operating objectives. Methodological progress 
integrates physics-informed neural networks 
(PINNs), Koopman theory paired with Model 
Predictive Control (MPC), and causal AI for 
root-cause analysis; reinforcement learning 
(RL) is considered only with hard constraints 
and human oversight. Adoption is projected to 
grow at ~10–15% CAGR in chemical engineering 
(Internal estimate, Modela 2025 based on 
market trends). In wastewater, hybrid prediction 
plus MPC is associated with measurable 
aeration-energy reductions4 (illustrative: 
US$80,000–120,000/year in medium-scale 
plants assuming electricity at US$0.12/
kWh). In Seawater Reverse Osmosis SWRO, 
supervisory MPC reduces specific energy by 
~0.3–0.8 kWh/m³ (illustrative: ~US$50,000/
year in large plants assuming 30,000 m³/d)]. 
In aquaculture, hybrid forecasting reduces 

exposure to algal blooms ($5-7B annually, 
illustrative: ~10-20% risk mitigation).

4 M. Salomé Duarte, Gilberto 
Martins, Pedro Oliveira, Bruno 
Fernandes, Eugénio C. Ferreira, 
M. Madalena Alves, Frederico 
Lopes, M. Alcina Pereira, and Paulo 
Novais. A Review of Computational 
Modeling in Wastewater Treatment 
Processes. ACS ES&T Water 2024 
4 (3), 784-804 DOI: 10.1021/
acsestwater.3c00117
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GAS 
APPLICATIONS
KEY FOR PROCESS EFFICIENCY AND 
DEFOSSILIZATION	

2

Gas compounds play a fundamental role across a wide range 
of engineering and sustainable processes. They can serve as 
essential feedstocks, intermediate supplies, valuable products, 
or, in some cases, undesired by-products or emissions. Their 
presence and behavior are often critical to the efficiency, safety, 
and environmental impact of a process. For instance, gases may 
be injected intentionally to initiate or sustain a reaction, generated 
as part of a transformation, or released into the atmosphere as 
part of the system’s output.

Modeling and simulation provide powerful tools for understanding 
and predicting the behavior of gases within these processes. 
Whether analyzing gas blending in energy systems, CO₂ 
emissions in bioprocesses, or hydrogen dynamics in sustainable 
fuel technologies, computational models can offer insight into 
mass transfer, reaction kinetics, and environmental dispersion. 
These tools enable engineers and decision-makers to optimize 
performance, ensure compliance with regulatory standards, and 
support the transition to greener technologies

In renewable gas applications, CFD optimizes mixing and hydrogen 
blending, reducing biogas upgrading costs. With Europe capturing 
40% of the global biogas market, these mechanistic simulations 
can extend equipment lifespan by mitigating H2S corrosion 
ensuring regulatory compliance in UK and Chile grids.
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2.1.    MAKING THE GRID 		
	 GREENER AND SAFER

One of the key challenges in the energy 
sector is transforming the existing gas grid 
into a greener, more sustainable system by 
increasing the share of renewable gases in the 
overall mix. These renewable gases include 
biogas, biomethane, green hydrogen, and 
others that offer low-carbon or carbon-neutral 
alternatives to conventional fossil fuels. 
Alongside this transition, ensuring the safe 
handling, distribution, and integration of these 
gases is essential to protect infrastructure, the 
environment, and public health.	

2.1.1. Renewables gas mix	
The natural gas distribution network is 
a well-developed infrastructure globally, 
consisting of pipelines that transport gas from 
extraction to consumption points. However, 
it contributes significantly to greenhouse gas 
emissions through combustion and leaks. As 
part of the energy transition, there is a growing 
need to replace traditional hydrocarbons with 
cleaner alternatives, such as hydrogen. Yet, 
this shift presents several challenges5. The 
use of CFD simulation can help study in detail 
the mixing of these gases within the natural 
gas distribution network. The information 
provided by these simulations can be used 
to make decisions regarding the suitability 
of gas replacement, as well as to study the 
effect of different operational parameters 
on the performance of the transportation 
network. Several geometries of gas blending 
units can be represented in CFD as it is shown 
in Figure 2. And the results obtained through 
the modeling application are well validated 
with other studies.

5 Topolski, Reznicek, E. P., Erdener, 
B. C., San Marchi, C. W., Ronevich, 
J. A., Fring, L., ... & Chung, M. 
(2022). Hydrogen blending into 
natural gas pipeline infrastructure: 
review of the State of technology.
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As shown in Figure 3, the transported energy is initially zero since the system starts at 
rest. Over time, the pressure drop accelerates the flow until it reaches a steady state. By 
simulating the same scenario with different gas compositions, the results of Gondal et al6. 
can be replicated, as shown in Figure 3.

Figure 2. Virtual replica and simulation of two gas blending configurations systems.

Figure 3.  Gas blending simulation results with reported values from literature.

6 Gondal, I. A., & Sahir, M. H. 

(2012). Prospects of natural gas 

pipeline infrastructure in hydrogen 

transportation. International 

Journal of Energy Research, 36(15), 

1338-1345.
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2.1.2.   Hazardous gas 			
	    release	
H₂S (hydrogen sulfide) is a highly toxic and 
corrosive compound that can cause death 
within seconds, even at very low concentrations. 
Unfortunately, it is commonly produced under 
anaerobic biological conditions in waste 
treatment processes, as well as during crude oil 
refining. Since we cannot completely eliminate 
its presence, it is essential to design systems and 
define operating conditions that minimize the 
impact of H₂S on the environment surrounding 
the emission point. One effective approach is 
to simulate the dispersion plume of an H₂S-rich 
gas stream to evaluate exposure zones and 

Figure4.  Simulation of the H₂S-rich gas stream under various operating conditions.

ensure regulatory compliance. The shape and 
reach of the plume depend on several factors. 
As illustrated in the Figure 4, both the outlet 
mass flow rate and outlet velocity significantly 
influence the plume’s behavior. This model 
was implemented in OpenFOAM, considering 
a turbulent flow regime, thermodynamic and 
transport models, and using Cantera7  to obtain 
accurate parameter values.

7 https://cantera.org/2.6/sphinx/html/
cython/thermo.html
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Figure 5.  Simulation of the injection of air using a bubbling system.

2.2.   OXIGEN SUPPLY AND  	
          MIXING 

Air or oxygen injection plays a critical role in 
various industrial processes, primarily in two 
key aspects: maintaining aerobic conditions 
necessary for biological or chemical reactions 
and promoting effective mixing within the 
system. Depending on the application, this 
injection can take several forms, including jet 
injection, gas bubbling, and surface aeration, 
among others. Each method has different 
implications for mass transfer, energy efficiency, 
and process control.

2.2.1. Gas bubbling  
Aeration typically occurs through the 
injection of bubbles, usually from the bottom 
of a process unit. These bubbles can vary in 
shape and size depending on operational 
conditions and the diffuser’s design. Their 
physical characteristics directly influence 
oxygen transfer efficiency, mixing dynamics, 
and the overall effectiveness of the aeration 
process.

Traditional modeling approaches often 
cannot represent individual bubbles explicitly 
and instead treat the gas as a continuous 
secondary phase—an approximation that 
may introduce limitations. Simulating bubble 
injection systems using fully resolved Euler–
Euler models is highly computationally 
demanding. In contrast, hybrid Euler–
Lagrange approaches offer a substantial 
reduction in computational cost while 
maintaining accuracy. Figure 5 illustrates the 
development and impact of a bubble-type air 
injection system within a process unit. These 
models have been validated in the literature 
against both high-fidelity simulations and 
experimental data. Building capabilities 
around these methods allows for faster, more 
scalable simulations of real-world systems, 
enabling better design and operational 
optimization.
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Figure 6.  Validation of CFD model for (a) optimal oxygen homogenization in tank for a recirculating unit in 
Aquaculture and (b) comparison of predicted OD values versus experimental ones.

show a CFD modeling application capable of 
representing oxygen transfer between phases 
and predicting whether the levels required by 
the process are met. Such simulations can be 
leveraged across the air injection technology 
development industry to optimize performance 
and efficiency.

2.2.2.   Oxygen concentration
The transfer of oxygen from the gas phase 
to the liquid phase is key to ensuring that the 
oxygen concentration is appropriate for the 
process to take place. An oxygen concentration 
below the desired threshold may limit the (bio)
reaction, reducing product growth (e.g., from 
fish, bacteria, yeast, etc.) or product generation. 
Conversely, a concentration above the set point 
can lead to excessive energy consumption for 
air injection and, consequently, unnecessary 
economic costs.

Various technologies have been developed to 
ensure that the required oxygen concentration 
is achieved in the process unit. In Figure 6, we 
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ADVANCED 
BIOLOGICAL 
PROCESS 
ENHANCING RESILIENCE THOUGH 
DIGITAL COPILOTING	

3

Biological processes—or bioprocesses—are expected to play 
a pivotal role in the transition toward a circular economy and 
in advancing the environmental sustainability of industrial 
systems. These processes harness the power of microorganisms 
or enzymes to convert waste into valuable resources, reduce 
emissions, and promote the efficient use of materials and 
energy.

Modeling these bioprocesses provides a powerful way to 
understand, predict, and optimize their behavior. When 
integrated into operations, a well-developed model can 
function as a real-time digital copilot—running in parallel with 
the physical system to offer continuous insights, simulate 
alternative scenarios, and support informed decision-making. 
This added layer of information helps reduce uncertainty, 
improve process reliability, and ultimately enhance the overall 
performance and resilience of sustainable technologies.
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data and the corresponding fields from the 
CFD simulation. 

The tool first takes a user-defined scalar field 
from a CFD simulation and a specified number 
of zones. It calculates threshold values to 
divide the domain into equal-volume zones, 
assigning each mesh cell accordingly (Figure 
a–c). Connected cells are grouped into 
compartments, and those below a minimum 
volume are merged with neighbors based on 
the highest exchange flow (Figure d). The 
tool then identifies boundary faces between 
compartments (Figure e) and sums the flow 
through them to compute an N × N exchange 
flow matrix (Figure f). Compartments can also 
be refined manually using primitive shapes.

3.1 	 MOVING LIMITS/		
 	 BREAKING BOUNDARIES 

Exploring modeling tools allows us to move 
beyond the traditional constraints and 
boundaries imposed by the physical domain. 
We should continuously seek new approaches 
and think beyond conventional methods. This 
mindset of forward-looking and out-of-the-box 
thinking enables us to test innovative ideas, 
challenge the status quo, and develop new 
tools that can scale up the benefits of using 
modeling.

3.1.1   A methodology for fluid 	
	  dynamic and kinetic 		
 	  integration 
So far, there is no fully automated methodology 
available to integrate fluid dynamic models—
typically solved through CFD—with the kinetics 
of a process in a seamless and efficient way. 
While several methodologies attempting to 
bridge this gap have been reported in the 
literature—including in a review we published 
couple years ago8 —these approaches still rely 
heavily on manual procedures and subjective 
decisions. As a result, the overall workflow 
becomes time-consuming and highly dependent 
on the individual modeler’s expertise and 
judgment.

This lack of standardization not only limits 
scalability and reproducibility but also introduces 
significant variability in results, making it difficult 
to consistently evaluate or compare outcomes 
across different systems or modeling teams. 
Developing a robust, automated framework 
that can couple CFD with kinetic models in a 
transparent and repeatable manner remains a 
critical challenge—and a major opportunity—
for the modeling and simulation community. 

The developed compartmentalization procedure 
is fully automated with a self-developed tool 
utilizing OpenFOAM and C++. OpenFOAM 
which facilitates direct access to the mesh’s 

8 M.C. Sadino-Riquelme, A. 
Donoso-Bravo, F. Zorrilla, E. 
Valdebenito-Rolack, D. Gómez, F. 
Hansen, Computational fluid dynamics 
(CFD) modeling applied to biological 
wastewater treatment systems: An 
overview of strategies for the kinetics 
integration, Chemical Engineering 
Journal, 466, 2023, 143180, https://

doi.org/10.1016/j.cej.2023.143180.
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The developed compartmentalization procedure is fully automated with a self-developed 
tool utilizing OpenFOAM and C++. OpenFOAM which facilitates direct access to the 
mesh’s data and the corresponding fields from the CFD simulation. 

The tool first takes a user-defined scalar field from a CFD simulation and a specified number of 
zones. It calculates threshold values to divide the domain into equal-volume zones, assigning 
each mesh cell accordingly (Figure a–c). Connected cells are grouped into compartments, and 
those below a minimum volume are merged with neighbors based on the highest exchange 
flow (Figure d). The tool then identifies boundary faces between compartments (Figure 
e) and sums the flow through them to compute an N × N exchange flow matrix (Figure f). 
Compartments can also be refined manually using primitive shapes.

The described approach simplifies the system’s 
stationary flow field and the geometric details 
of the CFD simulation into a reduced set of 
compartments and their exchange flows. The 
more compartments there are, the more details 
from the original flow field prevail. Therefore, 
increasing the number of compartments reduces 
information loss. Actually, a CFD model is a 
compartmentalized system itself, where each 
mesh cell is a perfectly mixed compartment. 
Using the developed tool, compartmentalization 
can be performed based on any field defined 

in the CFD simulation. To ensure reliability, 
the total liquid volume is verified to match the 
sum of all compartment volumes. Additionally, 
an algorithm checks the mass balance for 
every compartment and iteratively corrects 
its exchange flows until the balance is fulfilled 
under a defined tolerance.
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Figure 7.  Compartmentalization of C1. (a) Streamlines of the velocity field, (b) compartments visualization, and (c) vector 
of volumes and exchange flow matrix.

Figure 8. Compartmental methane performance and average speed for (a) C1 and (b) C2.
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3.2   BIOFERTILIZER  		   	
         PRODUCTION

Transitioning to a circular economy also involves 
moving away from fossil fuel-based chemical 
fertilizers toward renewable, sustainable sources 
of nutrients that support long-term soil health. 
One promising pathway is the use of anaerobic 
digestion—a biological process in which organic 
matter is broken down by microorganisms in 
the absence of oxygen, producing biogas as 
a renewable energy source. In addition to 
energy production, this process generates a 
nutrient-rich byproduct known as digestate, 
which can serve as a valuable biofertilizer.

Digestate contains essential nutrients and 
minerals such as nitrogen, phosphorus, 
potassium, and trace elements that are beneficial 
for agricultural applications. However, the 
effective handling, treatment, and valorization 
of digestate are critical to ensuring both 
the economic viability and environmental 
sustainability of anaerobic digestion systems. If 
not properly managed, digestate can become a 
waste stream rather than a valuable resource.

To fully unlock its potential, digestate must 
be treated not merely as a residual output, 
but as a co-product with quantifiable value. 
Therefore, accurate modelling of the anaerobic 
digestion process should include a detailed 
representation of the composition and dynamics 
of digestate. This includes tracking the presence 
and transformation of key components 
that directly influence its agronomic value, 
marketability, and environmental impact. Such 
a comprehensive modelling approach can 
support better decision-making, optimize system 
performance, and promote the integration 
of anaerobic digestion into broader circular 
economy strategies.

3.1.2   An improved approach 	
	 to evaluate dead zones in 	
	 bioprocesses
Dead zones are commonly used as indicators 
of mixing efficiency within a biorreactor. 
An effective mixing system ensures a 
well-homogenized volume, resulting in biogas 
production comparable to that of a Perfectly 
Mixed Reactor (PMR). In this context, a dead 
zone refers to a region where biorreactor 
performance is reduced, often due to nutrient 
deficiencies that impair microbial activity and 
survival. Traditional definitions of dead zones 
rely on absolute or relative velocity thresholds. 
We used the above desribed procudre to study 
detah zone definition in anaerobic digestion. 

When simulating the AD process alongside 
the flow field (Figure 7), it becomes evident 
that methane production depends on multiple 
factors beyond flow velocity alone. In C2, 
the compartments with the highest methane 
performances do not always correspond to 
those with the highest average speeds; a 
pattern also observed in C1. This indicates 
that velocity thresholds alone are insufficient 
for evaluating dead zones (Figure 8). Other 
factors, such as connectivity to the inflow 
location and substrate characteristics, may 
significantly impact AD performance locally. 
Moreover, classifying reactor volumes solely 
as dead or active may overlook nuances 
in performance. The full integration of the 
compartmentalization approach with the 
ADM1 model enables the calculation of this 
performance metric. These findings have direct 
and severe financial implications for project 
design and profitability. For instance, case C1 
exhibits a methane yield of 98.1% relative to a 
PMR, even though conventional criteria would 
classify up to 99.7% of its volume as a dead 
zone. An engineer or investor relying on that 
flawed metric would be induced to specify a 
more powerful and expensive mixing system 
(increasing CAPEX) with higher lifetime energy 
consumption (increasing OPEX). This decision 
would permanently damage the project’s ROI 
without delivering any proportional benefit in 
methane yield.
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3.2.1    Phosphorus presence
	    in digestate
The original ADM1 model does not include 
certain elements in its equations, such as 
sulfur, phosphorus, or iron, due to the limited 
research available on these topics at the time 
the model was developed. As a result, the 
model is unable to describe mechanisms that 
occur in processes involving, for example, 
phosphorus-rich wastewater. For this reason, 
several extensions to the original model have 
been developed to capture these dynamics. 
One such extension focuses on phosphorus 
and considers the release of phosphate 
from the substrate into the liquid phase of 
digestion, followed by its precipitation in 
the form of struvite or k-struvite9. Capturing 
these mechanisms is particularly relevant for 
phosphate-rich influents, and it also enables 

Figure 9.  General diagram of the new processes included (yellow squares) in the extended version of the ADM1 model 
called ADM1-FB.

modelling of phosphate concentration in the 
digestate and its potential use as a higher-quality 
fertilizer. We developed an extended version 
of the ADM1 called ADM1-FB that considers 
the phosphorus cycle as well as the H2S 
presence in the biogas. A general diagram of 
this extended version of the model as well the 
result of simulation using the model, depicting 
the dynamic of the nutrients in the digestate 
and the struvite buildup, are shown in Figure 9. 
The environmental impact transforms digestate 
from waste to a valuable co-product, with 
markets in sustainable agriculture showing 
growing value in 2025.

9 Ruyi Wang, Yongmei Li, Wenling 
Chen, Jinte Zou, Yinguang Chen, 
Phosphate release involving 
PAOs activity during anaerobic 
fermentation of EBPR sludge and 
the extension of ADM1, Chemical 
Engineering Journal, Volume 287, 
2016, Pages 436-447. https://doi.
org/10.1016/j.cej.2015.10.110.
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3.2.2  Nutrient removal	
The sister company Aroma has conceptually 
developed the Nitrogen Removal Process 
(PEN). This innovative solution aims to reduce 
the nitrogen content in the digestate through 
a biological process. PEN uses the action of 
three bacterial strains, which, through their 
metabolism, transform nitrogen compounds 
into gaseous nitrogen. This enables a natural 
reduction of nitrogen content, allowing for 
more balanced and environmentally friendly 
management in agricultural settings. Figure 
10 shows a general diagram of this solution 
and its main components. The performance 
of PEN depends critically on several operating 
parameters. Therefore, with modeling, an 
advanced exploitation code has been developed 
to analyze the effect of each of these parameters 
on system performance. This code allows the 
generation of a large number of operational 
scenarios. Subsequently, using data analysis 

Figure 10. Process modelling of the nutrient removal process (PEN). (a) diagram of the bioreactor (b) bioprocess 
pathways involved in the system (c) data science application of the model results (d) main variables dynamic of the 
system in transient model.

algorithms, these scenarios are examined to 
identify correlations and extract conclusions. 
All the information can be used to support the 
piloting of the PEN system. Figure 10 present 
the comprehensive modelling application to 
understand and optimize the operation of 
this bioreactor. 

The advanced exploitation code analyzes 
operational parameters across multiple 
scenarios, identifying correlations to optimize 
PEN system piloting. This could result in up to 
10-20% OPEX savings in biological nitrogen 
reduction, promoting balanced management 
in agricultural and environmental settings.
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The use of models continues to shape our lives—whether in 
the recommendations we receive for movies and series or 
in improving and optimizing the operation of processes to 
maximize resilience and sustainability indicators. AI will play 
a key role; however, theory-based models, which capture the 
fundamentals and the essential processes that govern life on 
the planet, will remain the backbone of engineering, where 
understanding what is happening—and the causes of a given 
behavior—is of paramount importance.

A virtuous cycle may be emerging: AI is hungry for data 
and new content, and theory-based models can help satisfy 
that demand by generating large amounts of data at a much 
lower cost than running equivalent field experiments. For 
this cycle to work, mechanistic models must be properly 
implemented—both in terms of their underlying fundamentals 
and their numerical resolution—so that the generated data is 
trustworthy and AI applications can build upon it effectively.

Mechanistic models generate reliable data for AI, quantifying 
ROI in key industries, such as preventing aquaculture mortalities 
causing global losses of billions annually due to algal blooms 
and diseases. This integration accelerates the industrial 
revolution toward resilient and sustainable processes in 2025. 
By 2025, hybrid modeling will drive efficiency improvement 
in complex systems, positioning mechanistic foundations as 
the backbone for AI-driven industrial revolution.

I strongly believe we are at the beginning of an industrial 
revolution. As with all revolutions, it will bring significant 
changes to the way work is carried out. We must adapt, 
embrace, and take full advantage of the benefits that these 
new tools and capabilities will bring.
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